Backpaper - Optimization (2019-20) Time: 3 hours.

Attempt all questions. There are a total of 55 points, the maximum you can score is 50.

1. Consider the network flow problem on the directed graph shown below. The numbers next to each directed arc \rightarrow is the *cost* associated to the arc, while the numbers next to \Rightarrow is the external *supply/demand* at the node.

Denote by **c** the vector of costs corresponding to the arc. We are interested in minimizing the total cost $\mathbf{c}^T \mathbf{f}$, where the flow vector \mathbf{f} satisfies the flow conservation equations and $\mathbf{f} \ge \mathbf{0}$.

- (a) Find an optimal basic feasible solution (feasible tree solution) to the problem. [7 points]
- (b) Find the optimal cost for the problem. [3 points]

Note: If you are implementing the simplex algorithm, you can find an initial feasible basic/tree solution by considering the tree indicated by dashed lines.

2. Write the following problem in standard form: minimize $-2x_1 - x_2$

subject to
$$x_1 - x_2 \leq 2,$$

 $x_1 + x_2 \leq 6$
 $x_1 \geq 0, x_2 \in \mathbf{R}.$ [5 points]

3. Minimize $-2x_1 + x_2 - 2x_3$

subject to
$$2x_1 + x_2 + x_4 = 10,$$

 $x_1 + 2x_2 - 2x_3 + x_5 = 20,$
 $x_2 + 2x_3 + x_6 = 5,$
 $x_1, x_2, \dots, x_6 \ge 0.$ [5 points]

4. Let $\mathbf{B} = {\mathbf{x}_1, \cdots, \mathbf{x}_n}$ be an orthonormal basis of an inner product space V. Then show for any $\mathbf{x} \in V$

$$\mathbf{x} = \sum_{j=1}^{n} \langle \mathbf{x}, \mathbf{x}_j \rangle \, \mathbf{x}_j,$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product on V. [5 points]

5. Solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ (first check whether it is consistent, and then find the general solution if the system is consistent). Also find for \mathbf{A} , a g-inverse, the rank, a rank factorisation and a basis of the null space.

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 1 \\ 4 & 0 & 4 \\ 3 & 1 & 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$$
 [5 points]

- 6. Define a *basic feasible solution* (bfs) of a polyhedron P defined by the inequality constraints $\mathbf{a}_i^T \mathbf{x} \ge b_i$, $i = 1, 2 \cdots, m_1$ and the equality constraints $\mathbf{a}_i^T \mathbf{x} = b_i$, $i = m_1 + 1, \cdots, m_1 + m_2$. [4 points]
- 7. Suppose that the polyhedron $P = \{ \mathbf{x} \in \mathbf{R}^n : \mathbf{a}_i^T \mathbf{x} \ge b_i, i = 1, 2 \cdots, m \}$ is nonempty. Then show that if there are *n* vectors among $\mathbf{a}_1, \cdots, \mathbf{a}_m$ that are linearly independent, then the polyhedron *P* does not contain a line. **[5 points]**
- 8. Write down the dual of the following problem: minimize $x_1 x_2$

subject to

$$2x_1 + 3x_2 - x_3 + x_4 \le 0,$$

$$3x_1 + x_2 + 4x_3 - 2x_4 \ge 3,$$

$$-x_1 - x_2 + 2x_3 + x_4 = 6,$$

$$x_1 \le 0,$$

$$x_2, x_3 \ge 0.$$
[4 points]

- 9. For each of the statements below, state whether it is true or false. If true, prove it and if false, give a counterexample.
 - (a) Consider the problem of minimizing $\mathbf{c}^T \mathbf{x}$ over a polyhedron P. If the polyhedron has an extreme point then the minimization problem has a finite optimal value. [4 points]
 - (b) Consider the problem of minimizing $\mathbf{c}^T \mathbf{x}$ over a polyhedron P. If there is more than one optimal solution, then there are uncountably many optimal solutions. [4 points]
 - (c) Consider the dual problem to the primal problem: minimize $\mathbf{c}^T \mathbf{x}$ over a polyhedron P. The dual problem is feasible. [4 points]